When Is a Sprint a Sprint? A Review of the Analysis of Team-Sport Athlete Activity Profile


The external load of a team-sport athlete can be measured by tracking technologies, including global positioning systems (GPS), local positioning systems (LPS), and vision-based systems. These technologies allow for the calculation of displacement, velocity and acceleration during a match or training session. The accurate quantification of these variables is critical so that meaningful changes in team-sport athlete external load can be detected. High-velocity running, including sprinting, may be important for specific team-sport match activities, including evading an opponent or creating a shot on goal. Maximal accelerations are energetically demanding and frequently occur from a low velocity during team-sport matches. Despite extensive research, conjecture exists regarding the thresholds by which to classify the high velocity and acceleration activity of a team-sport athlete. There is currently no consensus on the definition of a sprint or acceleration effort, even within a single sport. The aim of this narrative review was to examine the varying velocity and acceleration thresholds reported in athlete activity profiling. The purposes of this review were therefore to (1) identify the various thresholds used to classify high-velocity or -intensity running plus accelerations; (2) examine the impact of individualized thresholds on reported team-sport activity profile; (3) evaluate the use of thresholds for court-based team-sports and; (4) discuss potential areas for future research. The presentation of velocity thresholds as a single value, with equivocal qualitative descriptors, is confusing when data lies between two thresholds. In Australian football, sprint efforts have been defined as activity >4.00 or >4.17 m·s−1. Acceleration thresholds differ across the literature, with >1.11, 2.78, 3.00, and 4.00 m·s−2 utilized across a number of sports. It is difficult to compare literature on field-based sports due to inconsistencies in velocity and acceleration thresholds, even within a single sport. Velocity and acceleration thresholds have been determined from physical capacity tests. Limited research exists on the classification of velocity and acceleration data by female team-sport athletes. Alternatively, data mining techniques may be used to report team-sport athlete external load, without the requirement of arbitrary or physiologically defined thresholds.

In Frontiers in Physiology (Frontiers)